A Low-bit And Data-conversion-free Memristive Spiking Computing Network
نویسندگان
چکیده
منابع مشابه
A Real-time Trainable and Clock-less Spiking Neural Network with 1R Memristive Synapses
Spiking neural networks (SNNs) are being explored in an attempt to mimic brain's capability to learn and recognize at low power. Crossbar architecture with highly scalable Resistive RAM or RRAM array serving as synaptic weights and neuronal drivers in the periphery is an attractive option for SNN. Recognition (akin to “reading” the synaptic weight) requires small amplitude bias applied across t...
متن کاملPower efficient Spiking Neural Network Classifier based on memristive crossbar network for spike sorting application
In this paper authors have presented a power efficient scheme for implementing a spike sorting module. Spike sorting is an important application in the field of neural signal acquisition for implantable biomedical systems whose function is to map the Neural-spikes (N-spikes) correctly to the neurons from which it originates. The accurate classification is a pre-requisite for the succeeding syst...
متن کاملMemristive devices for computing.
Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on i...
متن کاملA memristive spiking neuron with firing rate coding
Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of ...
متن کاملAnalog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to repro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1828/1/012065